Verdic
Verdic

Trust infrastructure for LLM applications. Deterministic guardrails for production AI systems.

Product

  • How It Works
  • Pricing
  • Documentation

Company

  • About
  • Blog
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  • Security

© 2025 Verdic. All rights reserved.

verdic.dev
Compliance & Governance

AI Compliance: Meeting GDPR, HIPAA, and SOX Requirements with Guardrails

Navigate complex regulatory requirements for AI systems. Learn how to implement compliant LLM workflows for regulated industries.

Kundan Singh Rathore

Kundan Singh Rathore

Founder & CEO

January 8, 2024
15 min read
Compliance
GDPR
HIPAA
SOX
Governance
Regulation
AI Compliance: Meeting GDPR, HIPAA, and SOX Requirements with Guardrails

AI Compliance: Meeting GDPR, HIPAA, and SOX Requirements with Guardrails

As enterprises adopt LLMs, compliance teams face a new challenge: how do you prove AI systems meet regulatory requirements when the underlying models are probabilistic black boxes?

The Compliance Gap in AI

Traditional software compliance relies on:

  • Deterministic behavior: Same input always produces same output
  • Audit trails: Complete logging of all system behavior
  • Access controls: Granular permissions and data isolation
  • Explainability: Clear documentation of decision logic

LLMs break all these assumptions. Yet regulated industries like healthcare, finance, and government need to deploy AI while meeting strict compliance requirements.

Regulatory Frameworks

GDPR (General Data Protection Regulation)

Key requirements for AI systems:

  • Right to explanation: Users must understand automated decisions
  • Data minimization: Only collect and process necessary data
  • Purpose limitation: Use data only for stated purposes
  • Data protection by design: Build privacy into system architecture

LLM compliance challenges:

  • Models may memorize training data (privacy violation)
  • Outputs can inadvertently expose PII
  • No clear explanation for specific outputs
  • Cross-border data transfers in API calls

HIPAA (Health Insurance Portability and Accountability Act)

Key requirements:

  • PHI protection: Safeguard protected health information
  • Access controls: Implement role-based permissions
  • Audit trails: Log all PHI access and modifications
  • Business associate agreements: Ensure third-party compliance

LLM compliance challenges:

  • Models might generate fake but realistic PHI
  • Prompts containing PHI sent to third-party APIs
  • No audit trail of LLM reasoning process
  • Risk of training data leakage

SOX (Sarbanes-Oxley Act)

Key requirements for financial systems:

  • Internal controls: Documented processes and procedures
  • Data integrity: Ensure accuracy and reliability
  • Audit trails: Complete logging of financial data access
  • Segregation of duties: Separate authorization and execution

LLM compliance challenges:

  • Non-deterministic outputs affect data integrity
  • Difficult to establish internal controls for probabilistic systems
  • Hallucinations could misrepresent financial data
  • Hard to audit AI-generated financial recommendations

Implementing Compliant AI with Guardrails

Architecture for Compliance

// Compliant AI architecture with Verdic

import { verdic } from '@verdic/sdk'

interface ComplianceContext {
  userId: string
  userRole: string
  dataClassification: 'public' | 'internal' | 'confidential' | 'restricted'
  regulatoryFramework: 'gdpr' | 'hipaa' | 'sox'
  purpose: string
}

async function compliantLLMQuery(
  prompt: string,
  context: ComplianceContext
) {
  // 1. PII Detection and Redaction
  const sanitizedPrompt = await verdic.redactPII(prompt, {
    framework: context.regulatoryFramework
  })

  // 2. Purpose Limitation Check
  const purposeCheck = await verdic.validatePurpose({
    prompt: sanitizedPrompt,
    allowedPurpose: context.purpose,
    userRole: context.userRole
  })

  if (!purposeCheck.approved) {
    await verdic.logComplianceViolation({
      type: 'purpose_limitation',
      user: context.userId,
      timestamp: new Date(),
      details: purposeCheck.reason
    })
    throw new Error('Query violates purpose limitation')
  }

  // 3. Generate LLM Response
  const response = await openai.chat.completions.create({
    model: "gpt-4",
    messages: [{ role: "user", content: sanitizedPrompt }]
  })

  // 4. Output Validation
  const validation = await verdic.guard({
    output: response.choices[0].message.content,
    policy: {
      noPII: true,
      noHallucinations: true,
      framework: context.regulatoryFramework,
      dataClassification: context.dataClassification
    }
  })

  // 5. Audit Logging
  await verdic.logAuditEvent({
    userId: context.userId,
    action: 'llm_query',
    input: sanitizedPrompt,
    output: validation.sanitizedOutput,
    decision: validation.decision,
    framework: context.regulatoryFramework,
    timestamp: new Date()
  })

  // 6. Return Compliant Response
  return {
    content: validation.sanitizedOutput,
    complianceMetadata: {
      validated: true,
      framework: context.regulatoryFramework,
      auditId: validation.auditId
    }
  }
}

GDPR Compliance Example

// GDPR-compliant customer support chatbot

async function gdprCompliantChat(userQuery: string, userId: string) {
  const response = await compliantLLMQuery(userQuery, {
    userId,
    userRole: 'customer',
    dataClassification: 'confidential',
    regulatoryFramework: 'gdpr',
    purpose: 'customer_support'
  })

  // Implement right to explanation
  return {
    answer: response.content,
    explanation: {
      dataProcessed: 'Customer query and account information',
      purpose: 'Providing customer support',
      legalBasis: 'Legitimate interest',
      retentionPeriod: '90 days',
      yourRights: 'You can request deletion of this conversation'
    }
  }
}

HIPAA Compliance Example

// HIPAA-compliant medical records assistant

async function hipaaCompliantMedicalQuery(
  query: string,
  patientId: string,
  providerId: string
) {
  // Verify BAA with LLM provider
  if (!await verdic.verifyBAA('openai')) {
    throw new Error('No valid BAA with LLM provider')
  }

  // Check access authorization
  const authorized = await verdic.checkAccess({
    providerId,
    patientId,
    action: 'read_medical_records'
  })

  if (!authorized) {
    await verdic.logHIPAAViolationAttempt({
      providerId,
      patientId,
      timestamp: new Date()
    })
    throw new Error('Unauthorized access attempt')
  }

  const response = await compliantLLMQuery(query, {
    userId: providerId,
    userRole: 'healthcare_provider',
    dataClassification: 'restricted',
    regulatoryFramework: 'hipaa',
    purpose: 'medical_diagnosis_support'
  })

  return response
}

SOX Compliance Example

// SOX-compliant financial analysis tool

async function soxCompliantFinancialQuery(
  query: string,
  analystId: string,
  reportId: string
) {
  // Implement segregation of duties
  const canAnalyze = await verdic.checkRole(analystId, 'financial_analyst')
  const canApprove = await verdic.checkRole(analystId, 'approver')

  if (canAnalyze && canApprove) {
    throw new Error('SOX violation: User cannot both analyze and approve')
  }

  const response = await compliantLLMQuery(query, {
    userId: analystId,
    userRole: 'financial_analyst',
    dataClassification: 'restricted',
    regulatoryFramework: 'sox',
    purpose: 'financial_analysis'
  })

  // Ensure data integrity
  const integrityCheck = await verdic.validateDataIntegrity({
    output: response.content,
    sourceData: financialRecords,
    tolerance: 0.01 // 1% tolerance for calculations
  })

  if (!integrityCheck.passed) {
    await verdic.blockAndEscalate({
      reason: 'Data integrity violation',
      severity: 'critical',
      analystId,
      reportId
    })
    throw new Error('Data integrity check failed')
  }

  return response
}

Compliance Documentation

Essential documentation for auditors:

1. System Architecture Documentation

  • Data flow diagrams showing PII handling
  • Integration points with LLM providers
  • Guardrail validation logic
  • Audit logging infrastructure

2. Policy Documentation

  • Defined use cases and purposes
  • Role-based access control matrices
  • Data classification policies
  • Incident response procedures

3. Validation Reports

  • Regular testing of guardrails
  • False positive/negative rates
  • Compliance violation attempts
  • System uptime and reliability

4. Audit Trails

interface AuditEvent {
  eventId: string
  timestamp: Date
  userId: string
  userRole: string
  action: string
  inputHash: string // Never log actual PII
  outputHash: string
  validationDecision: 'ALLOW' | 'DOWNGRADE' | 'BLOCK'
  complianceFramework: string
  dataClassification: string
  purpose: string
}

Best Practices for Compliant AI

  1. Never trust LLM outputs: Always validate before exposing to users
  2. Minimize data exposure: Redact PII before sending to LLM APIs
  3. Implement purpose limitation: Enforce strict use case boundaries
  4. Maintain audit trails: Log every interaction with compliance metadata
  5. Regular compliance testing: Continuously validate guardrails
  6. Document everything: Treat compliance docs like production code
  7. Vendor due diligence: Verify BAAs and DPAs with LLM providers
  8. Incident response plans: Have procedures for compliance violations

Conclusion

LLMs can be deployed in regulated industries, but it requires a governance-first approach. Deterministic guardrails are essential infrastructure for proving compliance to auditors and regulators.

By implementing frameworks like Verdic, enterprises can confidently deploy AI while meeting GDPR, HIPAA, SOX, and other regulatory requirements.

Ready to Build Safer AI?

Get your API key and start implementing enterprise-grade guardrails in minutes.